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Abstract—Wildfire Decision Support Systems are critical tools
for civil protection authorities in the management of all wildfire
stages, including prevention. To timely act and apply the neces-
sary preventive measures to reduce the fire danger in wildfires,
many proposed calibration studies of the Canadian Forest Fire
Weather Index System (CFFWIS) have been performed mainly
based on techniques that still depend on manual and empirical
analysis, being limited to exploiting a few regions. This paper
proposes a methodology for automatic calibration of the CFFWIS
to obtain a fire danger measurement that best suits the specific
characteristics of a given region. The proposed methodology,
applied to 769 regions from Europe, is based on the k-means
clustering technique to automatically identify patterns in the
data sets composed of elements of the CFFWIS and wildfire
records. The results of the automatic calibration of the CFFWIS
on each of the 769 regions reinforce the versatility of the proposed
methodology, which can be adapted to different regions.

Keywords—Automatic calibration, CFFWIS, k-means cluster-
ing, Wildfires, Fire Danger Classes.

I. INTRODUCTION

Wildfires are phenomena that inevitably can occur due to

unknown factors, natural causes (as dry weather, lightning),

accidental human actions (as by bonfires, railways), and arson

[1]. According to the 19th issue of the European Commission’s

annual report on wildfires for the year 2018 [2], wildfires

over 30 hectares (ha) of burnt area were observed in 38

countries from Europe, Middle East, and North Africa, ob-

taining a total mapping of 204.861[ha]. Although this value

was lower than the long-term average and that reported in

2017, 1.376.090[ha], there was a presence of large wildfires

in more countries than usual, where more than 250 people

were injured or killed. Furthermore, this report emphasizes

the damage caused to protected sites such as Natura2000, with

36% of the burnt area of the total, with Portugal being one of

the countries most affected. Due to the problems caused by

the wildfires phenomena, it is essential to obtain knowledge of

the wildfire danger for a given day and region, contributing to

a quick decision making that can prevent these occurrences

and considerably reduce human and forest losses (wildfire

management). In this sense, fire danger rating systems have

been introduced, which have the role of evaluating the meteo-

rological and soil moisture conditions that favor the ignition of

wildfires, in addition to determining, analytically, fire danger

into classes with variations between Low, Moderate, and

High. Among them, the National Fire Danger Rating System

(NDFRS) used in the United States [3], the McArthur Forest

Fire Danger Index (FFDI) used in eastern Australia [4], and

the Canadian Forest Fire Danger Rating System (CFFDRS)

used in Canada [5].

The Canadian Forest Fire Weather Index System (CFFWIS),

a CFFDRS subsystem, was developed for Canada with an

indication of six classes: Very Low, Low, Moderate, High,

Very High, and Extreme. Outside Canada, it has been exten-

sively explored, accompanied by necessary calibration studies

taking into account the distinction between meteorological

and soil moisture conditions to adapt to specific regions.

Several works have been focused on the calibration of the

CFFWIS. In [6], it is presented a methodology to calibrate

the CFFWIS in the districts of Continental Portugal, based on

the statistical daily values of FWI (Fire Weather Index), and

wildfire records (number of occurrences and burnt area) for

each district. In [7], a procedure for operational generation

of daily maps of fire danger over Mediterranean Europe and

calibration of CFFWIS is proposed, using probabilities of fire

duration exceeding to determine thresholds leading five classes

of fire danger. In [8], the calibration of CFFWIS is made

through measurement of the forest fuel moisture content in

the field for two Mediterranean regions (Algarve, Portugal

and Peloponnese, Greece), using mathematical models. In [9],

a percentile-based calibration of the CFFWIS is proposed

with optimization to the United Kingdom conditions, through

exceeding analysis of CFFWIS components with seasonal

variation and land cover type. In all these works, it is noted

the difficulty of the authors in covering a long period of fire

records, as they still depend on manual and empirical analyses

about very specific regions. Also, the variation in the values

of the elements of CFFWIS and wildfire records due to the

use of data from different meteorological stations, in certain

regions, justifies the adjustment of the danger classification to
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meet this variation, as shown in [6].

In this sense, the present work proposes a methodology

for automatic calibration of the Canadian Forest Fire Weather

Index System (CFFWIS) adapted individually for a given

region. The number of fire danger classes is defined according

to the seasons, divided between Hot Season (Summer and

Autumn) and Cold Season (Winter and Spring). Thus, for

the present study, five danger classes for Hot Season and

three danger classes for Cold Season are chosen according

to experts’ knowledge regarding the pattern of occurrences

[10]. To define the five and three classes of fire danger

in Hot Season and Cold Season, respectively, the proposed

methodology uses as input variables the daily FWI values,

the daily number of fire occurrences, and the daily burnt area

of a given region, which are used in the k-means clustering

method. The objective is to determine danger classes that

correspond to the obtained clusters. The k-means clustering

method promotes unsupervised learning of data sets composed

of CFFWIS and wildfire records for each region, considering

a strong relationship between these elements. In this way,

it can automatically identify distinct pattern levels by the

defined clusters (fire danger classes) through the similarity

between the data. By associating clusters with danger classes,

thresholds are defined between these classes for each region.

These thresholds take into account the FWI value, which

is the measurement estimated daily by the meteorological

weather systems, which is matched with a fire danger class.

The proposed methodology was applied to calibrate the CF-

FWIS in 769 regions from Europe, where each region was

divided into Hot Season and Cold Season. The results have

shown that the proposed methodology has performed the

automatic calibration of the CFFWIS on each of the 769

regions successfully, reinforcing the versatility of the proposed

methodology to define the fire danger classes to different

regions without requiring manual or empirical analysis. To the

best of our knowledge, there are no studies that use techniques

to automatically determine fire risk classes using CFFWIS for

a given region, making the present study important to prove

that clustering-based learning, specifically based on k-means

clustering, can be used to achieve this goal.

This work follows the following structure. In Section II, an

overview about CFFWIS is presented. Section III presents the

input variables and desired target for CFFWIS calibration, the

k-means clustering method adapted for this calibration, and the

general framework containing all fundamental elements for the

proposed methodology. Then, Section IV presents the results

of the implementation of automatic calibration of this system

using data sets of 769 regions from Europe provided by the

European Commission Joint Research Centre (JRC), as well

as validation by analysing large wildfires. Finally, Section V

presents the final remarks, as well as proposals for improving

this work.

Fig. 1: Structure of the Canadian Forest Fire Weather Index

System.

II. THE CANADIAN FOREST FIRE WEATHER INDEX

SYSTEM

The Canadian Forest Fire Danger Rating System (CFFDRS)

is a wildfire danger assessment system mainly used in Canada

developed since 1968, presenting two subsystems: the Cana-

dian Forest Fire Weather Index System (CFFWIS) and the

Canadian Forest Fire Behavior Prediction System (CFFBPS)

[11]. Years of CFFDRS research in Canada have resulted in

a final CFFWIS structure presented in [5], consisting of six

elements related to environmental conditions and vegetation

characteristics:

• Fine Fuel Moisture Code (FFMC): represents the mois-

ture content of litter and other cured fine fuels;

• Duff Moisture Code (DMC): consists of average moisture

content of loosely compacted organic layers;

• Drought Code (DC): represents the average moisture

content of deep layers of compact organic matter;

• Initial Spread Index (ISI): the combination of the FFMC

and wind speed that consists of the expected rate of fire

spread;

• Buildup Index (BUI): the combination of the DMC and

DC that represents a numeric rating of the total amount

of fuel available for combustion;

• Fire Weather Index (FWI): the combination of the DMC

and DC that consists of a numeric rating of fire intensity.

These six elements are represented in Figure 1, adapted from

[12].

The CFFWIS requires meteorological parameters as input

variables, i.e., air temperature and relative humidity, wind

speed, and accumulated precipitation in the last 24 hours, with

the element FWI as the main output, being an indicator of fire

behavior and danger. Knowing that the most significant daily

value of the danger index occurs up to the daily maximum,

which occurs at noon in local time, the values of these

meteorological parameters are obtained around that time.

The first studies considered FWI values on a scale from

zero to 16, called the D-scale. However, this scale did not

have enough interpretation in terms of fire intensity. Thus,

new studies were developed based on the determination of new

logarithmic scales to approximate fire danger rating appropri-
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Tab. I: Fire danger classes with respective FWI values in

Canada and the district of Coimbra, Portugal.

Danger Class Canada [5] Coimbra, Portugal [6]
Very Low FWI < 2 -

Low 2≤ FWI≤ 5 FWI < 15

Moderate 5≤ FWI≤ 9 15≤ FWI≤ 22

High 9≤ FWI≤ 17 22≤ FWI≤ 30

Very High 17≤ FWI≤ 30 30≤ FWI≤ 45

Extreme FWI≥ 30 FWI≥ 45

ately. The current scale used is the S-scale, also logarithmic,

conceptually representing the frontal fire intensity, which has

a range starting at zero and then grows indefinitely,according

to the severity of the fire [12].

Detailed information on the influence of each element of

CFFWIS, as well as mathematical formulations, can be found

in [5], [13]. Fire danger classes are generally determined by

analysing FWI values as thresholds between those classes.

The CFFWIS was developed for Canada with an indication

of six classes: Very Low, Low, Moderate, High, Very High,

and Extreme. In regions around the world, these classes can

be reduced/adjusted according to individual weather character-

istics. For example, in [6], analysis of the daily accumulation

of occurrences (number of wildfires and burnt area) is made

based on percentiles, where it was found that it was only

necessary to indicate five classes (disregarding ”Very Low”

class) to calibrate the CFFWIS for the districts of Portugal.

Table I shows some examples of FWI values chosen to

determine the fire danger classes for two different situations:

from the study that resulted in the final structure of CFFWIS

for Canada in [5], and from the aforementioned study adapted

to Portugal [6], taking as an example the district of Coimbra.

Figure 2 shows a mapping obtained on the September 2nd,

2020, containing a distribution of Conjunctural and Meteo-

rological Risk (RCM) in Continental Portugal, provided by

the Portuguese Institute for Sea and Atmosphere (IPMA),

composed by FWI (updated once a day by the IPMA) and

rural fire danger index (under the responsibility of the Institute

for Nature Conservation and Forests - ICNF) [14], [15].

III. AUTOMATIC CALIBRATION OF CFFWIS

In this section, the input variables and desired target are

defined (Section III-A), and the clustering method, k-means,

is adapted to the CFFWIS calibration context (Section III-B).

Finally, in Section III-C, it is presented the algorithm that sum-

marizes the step-by-step of the proposed automatic calibration

of the CFFWIS, defining the fire danger classes for a given

region.

A. Input Variables and Desired Target

One way to classify certain regions of countries is by

using spatial units. For instance, the system used in the

European Union (EU) is the Nomenclature of Territorial Units

for Statistics (NUTS) classification, which is a hierarchical

system for dividing up the EU’s economic territory [10]. The

Fig. 2: Conjunctural and Meteorological Risk in Continental

Portugal, mapped on September 2nd, 2020 [14].

socio-economic analyses can be performed in three levels:

major regions (NUTS1), basic regions with regional policies

(NUTS2), and small regions for specific diagnoses (NUTS3).

The present work will be focused on the third level (NUTS3),

which has the format “ABXXX”, where the first two characters

represent the country code, and the rest represent a specific

administrative area [16].

The choice of input variables reflects the interpretation of

the FWI values of the Canadian Forest Fire Weather Index

System. As FWI is a daily numerical representation of the

intensity of the danger of a wildfire, and because it is com-

posed of components that indicate favorable meteorological

and soil moisture conditions for ignition, it can follow the daily

amount of wildfire records (occurrences and burnt area). Also,

the behavior of wildfires can vary depending on the season.

Thus, the fire danger analysis can be performed considering

two main seasons, the Hot Season (Summer and Autumn) and

Cold Season (Winter and Spring). In this sense, the chosen

input variables for the present study, for a given region and

each season are:

• the daily FWI values,

• the daily number of fire occurrences,

• the daily burnt area.
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The desired target of the proposed automatic calibration is

to obtain thresholds from the FWI values to determine the

fire danger classes for a given region. These thresholds are

determined using a clustering method that is discussed below.

B. Clustering Method

Clustering techniques can be used to efficiently classify data

sets based on similar characteristics, being mainly used for

unsupervised learning of systems by partitioning data sets into

subsets (clusters). They can be done by classifying them as

belonging exclusively to these groups (hard partitioning) or

through weighting belonging to these groups (soft partitioning)

[17], [18]. The proposed methodology to automatically cali-

brate the CFFWIS is based on a hard partitioning technique,

the k-means clustering [19].

Let a data set be composed by samples of the input

variables aforementioned, given by (1). Each k sample consists

of these 3 input variables grouped into a column vector

xk = [x1,k,x2,k,x3,k]
T . A set of k = 1,2, . . . ,N samples is given

by [19]:

X =

⎡
⎣

x1,1 x1,2 · · · x1,N
x2,1 x2,2 · · · x2,N
x3,1 x3,2 · · · x3,N

⎤
⎦ , (1)

where the observed variables are the input variables presented

in the previous subsection, where x1 represents the daily values

of FWI, x2 the daily number of fire occurrences, and x3 the

daily burnt area. The sample values are counted per day, for

a total of k = 1,2, . . . ,N days.

Let Ni be the number of samples of the i-th cluster (i =
1,2, . . . ,c, with c = 5 for Hot Season and c = 3 for Cold

Season)1, and Ii be the set of sample positions that belong

to the i-th cluster [20]. The distance between a data samples

xk and the centers vi of i-th cluster is represented by a standard

Euclidean norm [19]:

d2
i,k = (xk−vi)

T (xk−vi) , (2)

with

vi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
k∈Ii

xk

Ni
, if Ni > 0

⎡
⎢⎣

0

0

0

⎤
⎥⎦ , otherwise

, (3)

where vi = [v1,i,v2,i,v3,i]
T ∈ℜ3×1 has elements represented by

the average FWI value, average fire occurrences and average

burnt area, respectively, for each cluster, according (3).

The objective of k-means clustering method is to assigns

each data sample to one cluster exclusively, considering the

minimum distance, d2
i,k (2), between them. Iteratively, the

distances are computed, and the centers of the clusters are

updated until a stop condition be reached. A simple stop

1The choice of these values comes from the experts’ knowledge of the
pattern of wildfire occurrences over the seasons [10].

condition to be used, it is if there is no variation in the values

of the centers between one iteration and another, that is:

3

∑
j=1

c

∑
i=1

‖v(l)i, j − v(l−1)
i, j ‖ ≈ 0, (4)

where l and l−1 superscripts are, respectively, the actual and

previous iteration.

After reaching the condition (4), and considering that each

cluster represents a different fire danger class, the calibration

of the CFFIWS for a given region is done through the

indication of thresholds with the FWI values that separate

these classes:

θθθ = {θ 1,θ 2, . . . ,θ c−1}, (5)

being c = 5 for Hot Season, and c = 3 for Cold Season.

The proposed way to obtain a threshold is by averaging the

maximum FWI value for one class and the minimum FWI

value for the next class, i.e.:

θ i|i=1,2,...,c−1 =
max

(
x1,k|k∈Ii

)
+min

(
x1,k|k∈Ii+1

)

2
. (6)

The fire danger classes for a given region are defined based

on FWI values and the thresholds calculated as follows:

• Class “1”: FWI < θ 1;

• Class “2”: θ 1 < FWI < θ 2;
...

• Class “c−1”: θ c−2 < FWI < θ c−1;

• Class “c”: FWI > θ c−1.

C. Proposed Calibration Methodology

Algorithm 1 presents the step-by-step automatic calibration

of CFFWIS using the k-means clustering method presented in

Section III-B. In this algorithm, there are two procedures, one

for the Hot Season and one for the Cold Season.

IV. RESULTS AND DISCUSSION

In this section, the automatic calibration of the Canadian

Forest Fire Weather Index System for European regions

(NUTS3) is implemented through data sets composed between

the components of CFFWIS and wildfire records. Then, the

proposed methodology is validated by analysing large wildfires

in terms of fire danger classification, where the efficiency

of the proposed calibration framework based on k-means

clustering is presented by comparing it to another clustering

method, the Fuzzy c-Means (FCM) [21], [22].

A. Data sets description

To determine fire danger classes, two data sets provided

by the European Commission Joint Research Centre (JRC)

are used: a set consisting of wildfire records (number of

occurrences and burnt area), and another composed of values

of the components of the Canadian Forest Fire Weather Index

System, with all these data distinguished by 769 NUTS3

regions and date. The 769 NUTS3 regions presented on

the data set are divided between 22 countries from Europe,

between the years 2006 and 2015. The fire records set is
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Algorithm 1: Automatic Calibration of the Canadian

Forest Fire Weather Index System for a given region.

Inputs: N data samples {(x1,k,x2,k,x3,k)}N
k=1 being x1

the daily FWI values, x2 the daily number of fire

occurrences, and x3 the daily burnt area for a given

region;

Outputs: Fire danger classes based on FWI values for

a given region and Season;

Procedure:
1. Organize the input variables as a data set with the

structure in (1);

2. Split the data set between Hot Season (Summer and

Autumn seasons) and Cold Season (Winter and

Spring seasons) according to the date;

for Hot Season or Cold Season do
3. Set the number of fire danger classes (clusters):

if Hot Season, c = 5; if Cold Season, c = 3;

begin
4. Choose from the data set at random and

distinguishable centers for all c clusters;

repeat
5. Compute the distances between data

samples and all clusters using (2);

6. Obtain Ii, which contains the data sample

positions that belong to the i-th cluster by

selecting minimal distances from (2);

7. Update clusters centers using (3);

until Termination condition:
3

∑
j=1

c
∑

i=1
‖v(l)i, j − v(l−1)

i, j ‖ ≈ 0, with l representing

the actual iteration and l−1 the previous

iteration;

end
8. Calculate thresholds θ i|i=1,2,...,c−1 between the

fire danger classes using (6), order them in

ascending order according (5).

end

composed of 245.509 data samples, while the CFFWIS is

composed of 2.495.997 data samples. Hence, these data sets

are merged using NUTS3 regions and their date as keys

(common identifiers).

As the CFFWIS is related to the climatic conditions of

a given region, these countries may present different char-

acteristics, and as such the values that represent the danger

classes vary. For this, it is considered to separate the days of

the year between two main seasons: the “Hot Season”, which

comprises the period between Summer and Autumn seasons

(that is, between May 15th and September 30th), and the

“Cold Season”, which comprises the period between Winter

and Spring seasons (that is, between October 1st and May

14th).

B. Results

For the present study, the danger classes defined for the Hot

Season are 1) Very Low, 2) Low, 3) Moderate, 4) High, and 5)

Very High, while the danger classes defined for Cold Season

are 1) Low, 2) Moderate and 3) High. Also, 769 NUTS3 with

data referring to the Hot Season and 769 NUTS3 with data

referring to the Cold Season were selected. After implementing

the proposed methodology (Algorithm 1) for each NUTS3

region, in both seasons, the thresholds were obtained as the

final results of the calibration to represent the desired danger

classes. Figure 3 presents the Figures 3a–3d, where each one

determines the thresholds for each NUTS3 in the Hot Season

between a given fire danger class and the next class. Figure

4 presents the Figures 4a–4b, where each one determines the

thresholds for each NUTS3 in the Cold Season between a

given fire danger class and the next class. In both figures,

the 769 NUTS3 regions are distributed among the following

countries using values on the x-axis:

• Bulgaria (BG): from 1 to 28;

• Switzerland (CH): from 29 to 51;

• Cyprus (CY): from 52 to 52;

• Czech Republic (CZ): from 53 to 66;

• Germany (DE): from 67 to 167;

• Estonia (EE): from 168 to 172;

• Greece (EL): from 173 to 222;

• Spain (ES): from 223 to 274;

• Finland (FI): from 275 to 292;

• France (FR): from 293 to 376;

• Croatia (HR): from 377 to 383;

• Hungary (HU): from 384 to 403;

• Italy (IT): from 404 to 513;

• Lithuania (LT): from 514 to 523;

• Latvia (LV): from 524 to 529;

• Poland (PL): from 530 to 595;

• Portugal (PT): from 596 to 623;

• Romania (RO): from 624 to 665;

• Sweden (SE): from 666 to 686;

• Slovenia (SI): from 687 to 698;

• Slovakia (SK): from 699 to 706;

• Turkey (TR): from 707 to 769.

C. Validation

To validate the thresholds obtained in Section IV-B, two

analyses are carried out: 1) the choice of samples with burnt

area B.A. ≥ 1000[ha] in Hot and the choice of samples with

burnt area B.A. ≥ 500[ha] in Cold Season for each NUTS3,

and 2) the choice of 10% of samples that have the highest val-

ues of burnt area for each NUTS3 and each Season. These two

analyses are done to observe and classify the daily FWI values

corresponding to the large wildfires, where they are expected

to belong to the “High” and “Very High” danger classes in the

Hot Season, and to the “Moderate” and “High” danger classes,

following the definition of these classes in Section IV-B. The

classification of FWI values follows the distribution of danger

classes based on thresholds presented at the end of Section
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(a) FWI threshold θ 1 (6) between Very Low and Low, for all 769 NUT3 regions.
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(b) FWI threshold θ 2 (6) between Low and Moderate, for all 769 NUT3 regions.
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(c) FWI threshold θ 3 (6) between Moderate and High, for all 769 NUT3 regions.
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(d) FWI threshold θ 4 (6) between High and Very High, for all 769 NUT3 regions.

Fig. 3: FWI thresholds for the 769 NUT3 regions in Hot Season.
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(a) FWI threshold θ 1 (6) between Low and Moderate, for all 769 NUT3 regions.
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(b) FWI threshold θ 2 (6) between Moderate and High, for all 769 NUT3 regions.

Fig. 4: FWI thresholds for the 769 NUT3 regions in Cold Season.

III-B. For the first analysis, 338 samples from 119 NUTS3 in

Hot Season were selected (for B.A. ≥ 1000[ha]), while 173

samples from 46 NUTS3 in Cold Season were selected (for

B.A.≥ 500[ha]). For the second analysis (10% of the highest

burnt area ), 14.556 samples from 752 NUTS3 in Hot Season

were selected, while 9.028 samples from 734 NUTS3 in Cold

Season were selected.

To check the efficiency of using k-means on the proposed

automatic calibration methodology of CFFWIS, it becomes

interesting to compare it with another well-known clustering

method, such as fuzzy c-means (FCM), a soft partitioning

technique [21], [22]. In FCM, the samples have a membership

degree to all clusters instead of just one exclusively (as in k-

means). However, using FCM in place of k-means for CFFWIS

calibration, samples are assigned to each danger class based

on the highest membership degree, and then choose thresholds

between those classes.

The percentages of large wildfires in the Hot Season classi-

fied in the danger classes “High” and “Very High”, as well as

the percentages of large wildfires in the Cold Season classified

in the danger classes “Moderate” and “High”, using k-means

and fuzzy c-means on the proposed automatic calibration

methodology of CFFWIS, are shown in Table II.

Analysing the results in Table II for the proposed calibration

using k-means, it is noticed a better performance of the analy-

sis of burnt area with a minimum value (B.A.≥ 1000/500 [ha])
than choosing the 10% of samples with the highest burnt

area. This fact must occur due to the possibility that within

these 10% samples whose information related to them does

not configure as days that large wildfires occurred, justifying

a lower fire danger classification for these cases. As in the

Cold Season, the number of defined danger classes is smaller,

the percentages presented in the two analyses present values

close to each other. Table II also shows that the proposed

calibration methodology involving k-means presented better

results than the same methodology using fuzzy c-means. This

fact is because the case study requires a precise determination

of danger classes, separated between well-defined thresholds,

which matches the idea of exclusivity of a given sample

belonging to a class proposed by k-means.

V. CONCLUSIONS

The methodology proposed in this work for automatic

calibration of the Canadian Forest Fire Weather Index System

(CFFWIS) adapted to specific regions contributed with a new

perspective in defining fire danger classes. Adapting the k-

means clustering method to the calibration context, it became

possible to obtain important characteristics for an analysis

of fire behavior using FWI values and wildfire records for

various regions, distinguishing between Hot and Cold Season.
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Tab. II: Percentage values of correct classification in the danger classes “High” and “Very High” in Hot Season, and “Moderate”

and “High” in Cold Season, obtained through the proposed calibration methodology; and the calibration methodology with the

replacement of k-means by fuzzy c-means.

Proposed Calibration Using fuzzy c-means
Season B.A. ≥ 1000/500 [ha] Highest 10% of B.A. B.A. ≥ 1000/500 [ha] Highest 10% of B.A.

Hot 90.53% 74.61% 66.27% 58.72%

Cold 82.66% 85.67% 66.47% 71.37%

Also, the proposed method applied to each of the 769 NUTS3

showed positive results, which can be seen when classifying

large wildfires. The validation step, through two different

analyses of burnt area, showed the superiority of the proposed

methodology using k-means in comparison with the fuzzy c-

means applied for the same purpose. Future work may explore

other clustering techniques to be applied in the CFFWIS

calibration, in addition to new analyses that may contribute

to promoting greater efficiency in the determination of fire

danger indices.
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